STUDIES ON THE BIOSYNTHESIS OF BIALAPHOS (SF-1293). 14. NUCLEOTIDE SEQUENCE OF PHOSPHO-ENOLPYRUVATE PHOSPHOMUTASE GENE ISOLATED FROM A BIALAPHOS PRODUCING ORGANISM, Streptomyces hygroscopicus, AND ITS EXPRESSION IN Streptomyces lividans[†]

Sir:

In a previous paper²⁾, we reported that the first step of the bialaphos (BA) biosynthesis is the intramolecular rearrangement of phosphoenolpyruvate (PEP) to form the carbon-phosphorus (C-P) bond of phosphonopyruvate (PnPy) catalyzed by phosphoenolpyruvate phosphomutase (Fig. 1(A)). Due to the extreme instability of PEP phosphomutase of *Streptomyces hygroscopicus* SF1293, a bialaphos producing organism, we have not yet succeeded in obtaining the enzyme in a pure form.

Fig. 1. C-P bond formation steps in the bialaphos biosynthetic pathway.

PEP = phosphoenolpyruvate, PnPy = phosphonopyruvate, PF = phosphonoformic acid, CPEP = carboxyphosphonoenolpyruvate, PPA = phosphinopyruvate.

For part 13^{1} .

This enzyme is considered to be common to the biosynthesis of all C-P compounds³⁾. It is characterized by the very strong activity to catalyze the reverse reaction, and the equilibrium between PEP and PnPy favors of the phosphate ester (in the ratio of more than $100:1)^{2}$). Since the investigation of this unique enzyme is very important to reveal the C-P bond formation mechanism, we have determined the nucleotide sequence of the PEP phosphomutase gene.

In this communication, we describe the cloning and nucleotide sequence determination of the PEP phosphomutase gene and its expression in *Streptomyces lividans* 66.

In a previous report⁴⁾, MURAKAMI *et al.* showed that a 3.6-kb *Bam*H I fragment in the BA biosynthetic gene cluster could restore BA productivity to mutant NP47 that is defective in PEP phosphomutase (Fig. 2, pMSB2-4). Introduction of frame shift mutation into a *Bgl* II site of this fragment gave a new mutant E26 which showed no PEP phosphomutase activity²⁾.

A 1.3-kb *Bcl* I fragment containing this *Bgl* II site was inserted into the *Bam*H I site of pIJ680, downstream of the promoter of the aminoglycoside phosphotransferase (*aph*) gene⁵, as shown in Fig. 2. The constructed plasmids (pMSB32 and pMSB33) were introduced into *S. lividans* 66 by transformation⁶), and expression of the PEP phosphomutase activity was tested as follows. The *S. lividans* 66 harboring pMSB32 or pMSB33 was cultivated using 60 ml of the medium, glucose 7%, wheat germ 3.5%, Sungrain (Suntory Ltd.) 3.5%, KH₂PO₄ 2.25%,

Fig. 2. Restriction map of pMSB2-4, pMSB32 and pMSB33.

pMSB2-4 complemented PEP phosphomutase deficient mutants of *S. hygroscopicus* as previously described by MURAKAMI *et al.*⁴⁾ Arrows indicate the direction of the transcription from *aph* promoter with respect to the inserted fragments.

Fig. 3.	Nucleotide sequence of	1.314-bp Bcl I	fragment containing	g PEP	phosphomutase gene.
0		-,		,	

TGAT	CAGCG S G	0 GATI	CGAT I	20 CCT0 L) GGAA E	IC A G Q	GC A A	0 AA(K	CCC P	G G	40 CGC(A	CTT F	CCT(CGT	O CAA N	CAC T_	CGC A	60 CCCC R	GTGC G	GCG A	CCC L) ICG1 V	FCGA D	RCCC P	0 GGG G	GTG C	CGT V	90 GCT L	GCG R	GGC A	100 CCT L	GGA E	.GAG S	110 CGA E) ACAG Q	CTC L	120 GGCG G G
GCTT	13 CGCCT A S	0 CGG. D	ACGT	140 CTTC F) CTCC S	CCC P	15 GAG E	0 GAC D	CCC P	CAA N	160 CCA(Q	GTC S	GCC	17 GGTI	0 GGC A	CCG R	CAA K	180 1601 L	rcci L	rgg. E	19) AAC(R) GCG <i>I</i> D	ACGA D	CGT V	0 CGT V	TGT V	CAG S	10 CTC S	CCA H	CCG R	220 CGC A	GTT F	CCT L	230 TTC S) CGCC A	GAG E	240 TCGG S E
AGGA E	25 GAGCC SL	0 TGC(<u>R</u>	GCCG R	260 CCG1 R) GTG V	GCC	27 GAG E	0 GGC G	GT1 V	CG R	280 CTCC S	GGT	GCT(29 CCG R	0 GGA D	CGG	TAA N	300 ACCO P	CGCC	CCG A	31) CCG/ E) AGG(<u>G</u>	GCCG R	32 CGT V	0 GGC A	ATG **	3 ACC *	30 CCA	ACC	AAC	340 ACA	GCA	CCG	35) CAC() GTCC	ссс	360 ATT <u>G</u>
<u>gagg</u> SD	37 CACTC	0 ATG. M J	AACG N A	380 CGAC T) CGGA E	IGCA Q	39 .GGC A	0 AGC A	CGAA N	CG G	400 GCG/ D	ACC) R	GGG(G	41) GCA(T	0 CCA T	CAC R	4 GAT	420 1CG(3 /	GCC(A (GCC	43) GGC(G I) CGG(? I	CTCA L R	44 IGGT Y	0 ACC	TGC	4 TGC H	50 ACG A	CCC P	CAG	460 GCG	CCT C	GTC	47) AGC L) IGAT M	GGG G	480 TGTG V
CACG H D	49 Acgga G	0 CTG. L	AGCG S A	500 CGCG R) GAT I	тдс А	51 CGT V	0 CGC A	CCGA E	G G	520 GGT1 F	rcg. E	AGG(A	53) CGC L	0 TGT W	GGG A	5 CG1 S	540 CCC 6 (GGCC G L	CTG	550 TGC/ C 1) ATG1 M S	TCCA S T	CGG	0 CGC R	GTG G	GCG V	70 TCC R	GGG D	ACA	580 GCG D	ATG E	AAG A	59) CGT(S) ССТС	GAC T	600 GGAA E
CTGC L L	61 TCACG T	0 CTG L	GTCG V G	620 GCAC T) CCAT M	'GAC T	63 CGA D	0 .CGC A	CGI	CC P	640 CCG(G	GCG	TGC(P	65) CCG' V) ICC L	TCG V	6 TCG D	560 GAC() (GGTC G I	GAC	67(ACC(T () Gga1 G Y	FACG Y G	68 GCA	0 ACT F	TCA	6 ACA T	90 CCG A	CCC R	GCC	700 GGT F	TCG A	CCG	71) GCCG R) GCGC A	GGA E	720 GCGG R
GTCG V G	73 GCGCG A	0 GCC(A	GGGG G V	740 TGTG C	CTT F	°CGA E	75. GGA D	0 CAA K	IGG1 V	CT F	760 ГСС0 Р	CG A. K	AGA' M	77) FGA N	0 ACT S	CCT F	7 TCT F	780 1100 1100	GGCC G [GAC	79(GGC(G I) Caco H (CAGC Q L	80 TGG	0 CCC P	CGG	TCG A	10 CCG E	AGT F	тст	820 GCG G	GAA K	AGA I	83) TCC(R) GGGC A	CTG C	840 CAAG K
GACG D A	CCCAG	0 CGT(R 1	GACC D P	860 CGGA D	CTT F	°CGT V	87 CGT V	0 GG1 V	`GGC A	CGC R	880 GGA(T	CCG. E	AGG(A	89) CAC' L	D TGA I	TCT S	CC A K	000 AAA(CTGC	çcg	91(ATG(VI]) Gaac E F	GAGG E A	92 CGC	0 TGG D	ACC R	9 GGG A	30 CCG A	CGG	ССТ	940 ACG	CCG	AGG	95) CCG0 G) GCGC A	CGA D	960 .CGCC A
CTGT L F	97 FCATC I	0 CAC' H S	TCCC S R	980 GGAT M	GAA N	ICAC T	99 CCC P	0 GCA Q	IGCA Q	I GA I	000 FCGC A	CCA) T	CCT' F	101) FCA' M	0 IGG E	AGC R	10 GCT W)20 1660 V H	GAGO S (GC	103(AGT/ S) ACT (F H		104 TCC	0 TGA I	TCG	10 CGC P	50 CCA T	CCA T	CCT Y	060 ACC H	ACA T	CGC	107) CGT(S	CCGT	CGA	1080 .CGAC D
TTCG F A	109 CCGCG A	0 CTC(L (GGCA G I	1100 TCGC A) CCGG G	CTG C	111 CAT I	0 CTC W	GGGC A	1 CCA. N	120 ACC <i>i</i> H	ACA	GCA' M	113) FGC(R	0 GGG A	CCG A	11 CG1 F	140 TTCC	GCCO A /	GCG	1150 ATG(M I) CGŤ(R I	GACO D V	116 TCT / C	0 GCC	AGC R	11 GGA I	70 TCC R	GCA T	1 CCG	180 ACC R	GCG	GCA	119 TCT. Y) ACGG G	CAT	1200 'CGAG E
GATC D Q	121 AGGTG V	0 GCG A I	CCCC P L	1220 TGAA K) IGGA E	GAT I	123 CTT F	0 CGC G	CC1	CT F	240 FCG/ D	ACT. Y	ACG. E	125) AGG(G	0 GCC L	TGG E	12 Aga	260 AAG(1	GACO D E	GAG	1270 AAC' N () FGC1 C Y	ГАСА У Т	128 CAC	0 AGG	CCC	12 CCG D	90 ACC L	TGG A	CCG A	300 CGG V	TGC ฉ	AGG	131 GAT *:) GATC **	A	

The deduced amino acid sequence of the enzyme is shown under the nucleotide sequence. The partial amino acid sequences of an other predicted gene is written in italic type. This nucleotide sequence data is in the DDBJ, EMBL, and GenBank Nucleotide Sequence Databases under the accession number D10016.

CoCl₂ 0.0001%, and Silicon KM-72 antifoam (Shinetsu Chem. Co.) 0.01%, (pH adjusted to 7.0) in 500-ml Erlenmeyer flasks at 27°C for 6 days with shaking. The mycelium collected by centrifugation was suspended in 50 mM Tris-HCl buffer (pH 7.5) at a ratio of 1 g wet weight of mycelium/2 ml buffer and then disrupted by sonication for 10 minutes at 4°C. Unbroken cells and cell debris were removed by centrifugation (15,000 × g, 20 minutes) and the PEP phosphomutase activity of the supernatant was measured as previously described²).

S. lividans 66(pMSB32) exhibited high PEP phosphomutase activity (0.62 unit/mg protein, see ref.²⁾ for the definition of the unit), comparable to that in BA-producing S. hygroscopicus SF1293. It thus seems that the 1.3-kb Bcl I fragment of pMSB32 encodes PEP phosphomutase. On the other hand, S. lividans 66(pMSB32) with the PEP phosphomutase gene oriented oppositely to the direction of aph gene transcription did not show any of the enzymatic activity. The subcloned 1.3-kb fragment probably lacks a functional promoter region and the PEP phosphomutase gene is expressed under the control of the aph gene promoter in S. lividans 66(pMSB33).

Of course, another possibility is that the S. hygroscopicus promoter is not functional in S. lividans.

The 1,314-bp fragment was subcloned into pUC18 and pUC19 and its nucleotide sequence was determined by the dideoxy chain termination method⁷⁾. As shown in Fig. 3, an open reading frame of 313 codons, starting at 370th nucleotide and terminating at 1,308th nucleotide, was identified. The molecular weight of the encoded protein was calculated to be 33,700 dalton. A ribosomal binding site-like sequence, GGAGG, is present at the position 6-bp upstream from the putative initiation codon, ATG. In the region upstream of the PEP phosphomutase gene, the *C*-terminal portion of another open reading frame can be seen (presumably the step 4 gene⁴⁾ of BA biosynthesis).

Recently, a Harvard group reported the nucleotide sequence of a PEP phosphomutase gene of *Tetrahymena pyriformis*⁸⁾ producing 2-aminoethylphosphonic acid. There is significant similarity between the PEP phosphomutases from *Tetrahymena pyriformis* and *S. hygroscopicus* (50.3% identity over a 180 residue overlap, data not shown).

Fig. 4. Homology between the amino acid sequences of PEP phosphomutase (PEP PM) and CPEP phosphonomutase (CPEP PM).

PEPPM	MNATEQAANGDRGTTRSAGGRLRYLLHAPGACQLMGVHDGLSARIAVAEGFEALWASGLC * ********* ***	60
CPEPPM	MAVTKARTFRELMNAPEILVVPSAYDALSAKVIQQAGFPAVHMTG-~	45
PEPPM	MSTARGVRDSDEASWTELLTLVGTMTDAVPGVPVLVDGDTGYGNFNTARRFAGRAERV ************************************	118
CPEPPM	SGTSASMLGLPDLGFTSVSEQAINLKNIVLTVDVPVIMDADAGYGNAMSVWRATREFERV	105
PEPPM	GAAGVCFEDKVFPKMNSFFGDGHQLAPVAEFCGKIRACKDAQRDPDFVVVARTEALISKL	178
CPEPPM	GIVGYHLEDQVNPKRCGHL-EGKRLISTEEMTGKIEAAVEAREDEDFTIIARTDA-RESF	163
PEPPM	PMEEALDRAAAYAEAGADALFIHSRMNTPQQIATFMERWEGS-TPVLIAPTTYHTPSVDD ** * * ****	237
CPEPPM	GLDEAIRRSREYVAAGADCIFLEAMLDV-EEMKRVRDEIDAPLLANMVEGGKTPWLTTKE	222
PEPPM	FAALGIAGCIWANHSMRAAFAAMRDVCQRIRTDRGIYGIEDQVAPLKEIFGLFDYEG *. **	294
CPEPPM	LESIGYNLAIYPLSGWMAAASVLRKLFTELREAGTTQKFWDDMGLKMSFAELFEVFEYSK	282
PEPPM	LEKDENCYTQAPDLAAVQG **	313
CPEPPM	ISELEARFVRDQD	295

The conserved amino acids are marked by asterisks. The numbers indicate the positions of the last amino acid in each line.

As shown in Fig. 4, the amino acid sequence of PEP phosphomutase deduced from its nucleotide sequence showed approximately 26% homology to carboxyphosphonoenolpyruvate phosphomutase^{1,9)}, another C-P bond forming enzyme that catalyzes a reaction analogous to the one carried out by PEP phosphomutase in the BA biosynthetic pathway (Fig. 1, B). The derived amino acid sequence of the PEP phosphomutase gene of *S. hygroscopicus* has no significant similarity to any other sequences in the SWISS Prot protein sequences database.

High expression of this enzyme in *S. lividans* will facilitate the studies on the unique reaction mechanism(s) of C-P bond formation.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Encouragement of Young Scientists, Japan to T.H. and by a Grant-in-Aid for Co-operative Research, The Ministry of Education, Science and Culture, Japan to H.S.

> Tomomi Hidaka Makoto Hidaka[†] Haruo Seto

Institute of Applied Microbiology, The University of Tokyo, [†]Department of Biotechnology, Faculty of Agriculture, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received August 7, 1992)

References

 HIDAKA, T.; M. HIDAKA, T. UOZUMI & H. SETO: Nucleotide sequence of carboxyphosphonoenolpyruvate phosphonomutase gene isolated from a bialaphos producing organism, *Streptomyces hygroscopicus*, and its expression in *Streptomyces lividans*. Mol. Gen. Genet. 233: 476~478, 1992

- HIDAKA, T.; M. MORI, S. IMAI, O. HARA, K. NAGAOKA & H. SETO: Studies on the biosynthesis of bialaphos (SF-1293).
 Biochemical mechanism of C-P bond formation in bialaphos: Discovery of phosphoenolpyruvate phosphomutase which catalyzes the formation of phosphonopyruvate from phosphoenolpyruvate. J. Antibiotics 42: 491~494, 1989
- 3) HIDAKA, T.; H. IWAKURA, S. IMAI & H. SETO: Studies on the biosynthesis of fosfomycin. 3. Detection of phosphoenolpyruvate phosphomutase activity in a fosfomycin high-producing strain of *Streptomyces wedmorensis* and characterization of its blocked mutant NP-7. J. Antibiotics 45: 1008~1010, 1992
- MURAKAMI, T.; H. ANZAI, S. IMAI, A. SATOH, K. NAGAOKA & C. J. THOMPSON: The bialaphos biosynthetic genes of *Streptomyces hygroscopicus*: Molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205: 42~50, 1986
- 5) JANSSEN, G. R.; J. M. WARD & M. J. BIBB: Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene (aph) from *Streptomyces fradiae*. Genes and Development 3: 415~429, 1989
- 6) HOPWOOD, D. A.; M. J. BIBB, K. F. CHATER, T. KIESER, C. J. BRUTON, H. M. KIESER, D. J. LYDIATE, C. P. SMITH, J. M. WARD & H. SCHREMPF: Genetic manipulation of *Streptomyces. In A Laboratory Manual. The John Innes Foundation. Ed.*, D. A. HOPWOOD *et al.*, pp. 107~111, 1985
- SANGER, F.; S. NICKLEN & A. R. COULSON: DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463~5467, 1977
- SEIDEL, H. M.; D. L. POMPLIANO & J. R. KNOWLES: Phosphonate biosynthesis: Molecular cloning of the gene for phosphoenolpyruvate mutase from *Tetra*hymena pyriformis and over expression of the gene product in *Escherichia coli*. Biochemistry 31: 2598 ~ 2608, 1992
- 9) HIDAKA, T.; S. IMAI, O. HARA, H. ANZAI, T. MURAKAMI, K. NAGAOKA & H. SETO: Carboxyphosphonoenolpyruvate phosphomutase, a novel enzyme catalyzing C-P bond formation. J. Bacteriol. 172: 3066~3072, 1990